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A multigrid finite difference approach to steady flow
between eccentric rotating cylinders

Mo-Hong Chou*,1

Institute of Mathematics, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China

SUMMARY

A simple finite difference scheme over a non-uniform grid is proposed to solve the two-dimensional,
steady Navier–Stokes equations. Instead of the Newton method, a more straightforward line search
algorithm is used to solve the resultant system of non-linear equations. By adopting the multigrid
methodology, a fast convergence is achieved, at least for low-Reynolds number flow. This scheme is
applied, in particular, to flow between eccentric rotating cylinders. The computed results are shown in
good agreement with some analytic findings. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Flow between two rotating cylinders is representative of circular Couette flow and serves as a
typical configuration in connection with journal bearing problems. For a two-dimensional
setting, one is often interested in steady flow subject to various combinations of the cylinders’
eccentricity and rotation. For strongly viscous cases, like Stokes flow and its small linear
perturbation, some analytic results have been obtained by Wannier [1], DiPrima and Stuart [2],
and Ballal and Rivlin [3], among others.

As the Reynolds number is increased from zero, a numerical approach becomes inevitable
for coping with the non-linearity. Sood and Elrod [4] have used a finite difference scheme to
integrate the time-dependent Navier–Stokes equations until a pseudo-steady state is reached.
We are, however, interested in numerical procedures directly related to the steady governing
equations. There have been several investigations along this line, such as San Andres and Szeri
[5] and Kim [6]. Adoption of this approach will lead to solving a system of coupled non-linear
equations, together with its linearized version if the Newton method is used. Obviously, this
is not an easy task. In order to control the size of the resultant system, a high-order
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approximation method, such as the B-spline Galerkin method, was favored by previous
researchers, even though it entailed some mathematical complexity.

In this work we shall show that, at least for low-Reynolds number flow, a simple finite
difference scheme can be devised to yield a fast convergence by adopting the multigrid
methodology. The simplicity includes replacing the conventional Newton iteration by a more
straightforward line search algorithm in which we do not need to compute the Jacobian matrix
and solve the related linear problem.

The flow problem is formulated in Section 2 and the numerical method is proposed in
Section 3. It is found that the cylinders’ mode of rotation closely affects the flow pattern.
Several representative cases are discussed in Section 4. A comparison with a first-order
perturbation analysis [3] is included for checking of the initial effect of inertia.

2. PROBLEM FORMULATION

Consider a two-dimensional incompressible flow between two cylinders of which at least one
has a constant rotation about its axis. The inner cylinder has radius d1 and center (0, 0), while
the outer one has radius d2\d1, and center (l, 0), 05lBd2−d1. This configuration yields an
eccentricity e=l/(d2−d1). The constant angular velocities are denoted by V1 and V2 respec-
tively. The signs of these values indicate their respective senses of rotation (e.g., positive=
clockwise). The flow is assumed to be governed by the steady Navier–Stokes equations, which,
after non-dimensionalization, are written in terms of vorticity (v) and the streamfunction (c)
as follows:

cyvx−cxvy=
1

Re
(vxx+vyy) (1)

cxx+cyy= −v (2)

c=0 and 9c ·n� =d1V1 on inner cylinder (3)

c=c* and 9c ·n� = −d2V2 on outer cylinder (4)

In Equations (1)–(4) the unit normal vector n� points to the flow field, and c* is a constant but
not known a priori. The Reynolds number Re is defined as Re=d1

2�V( �/n, where n=kinematic
viscosity and V( =V1 unless V1=0, in which case V( =V2.

Let z=x+ iy. The conformal mapping in terms of the complex variable

z=
z+c
1+cz

, where c=
b

1+
1−b2
and b=

2ld1

d2
2−d1

2−l2 (5)

transforms the cylinders into a concentric configuration in the z-plane. Let z=exp(h− ij).
Equations (1)–(4) are accordingly converted into the following:
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chvj−cjvh=
1

Re
(vjj+vhh) (6)

cjj+chh= −Jv, where J=exp(2h)�z %(z)�2 (7)

c=0 and ch=
Jd1V1 at h=0= inner cylinder (8)

c=c* and ch=
Jd2V2 at h=h*=outer cylinder (9)

The unknown constant c* in Equations (4) and (9) is to be determined by the univalence of
pressure (p) around the cylinders denoted below by G1 and G2. This condition is derived from
the Navier–Stokes equations and reads as

0=Re
7

G
dp=

7
G

9v ·n� ds, where G=G1 or G2 (10)

In theory, the last closed integrals in Equation (10) are the same for G1 and G2 using Green’s
identity. In practice, their computed values are slightly different. Therefore, c* is indeed
determined by satisfying

7
G1

9v ·n� ds+
7

G2

9v ·n� ds=0 (11)

or, in terms of j, h co-ordinates

P

& 2p

0

vh(j, 0) dj+
& 2p

0

vh(j, h*) dj=0 (12)

To implement this condition, we introduce the following ancillary problem to be solved once
and for all:

v°jj+v°hh=0 and c°jj+c°hh= −Jv° (13)

c°(j, 0)=c°h(j, 0)=c°h(j, h*)=0 and c°(j, h*)=1 (14)

Plugging v° into Equation (12) will yield a value of P°"0. Hence, a solution to Equations
(6)–(9) with c*=0 is tried first. The computed P in Equation (12) then offers a correction:
c*= −P/P°.

3. THE NUMERICAL METHOD

The proposed finite difference scheme starts with generating a proper grid in the j, h-plane. If
the cylinders are concentric, one can exploit the usual polar grid. To increase the radial
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resolution adjacent to the cylinders, a non-uniform radial spacing, such as that controlled by
the Legendre abscissa, is economical. However, such a grid is distorted by eccentricity through
the conformal mapping (5). Namely, the grid is clustered towards the narrow side of the
clearance between the cylinders. A regridding is therefore performed in such a way that the
angular spacing around the inner cylinder is uniform. As a consequence, the grid in the
computational j, h domain is non-uniform in both co-ordinates. One may seek a further
mapping to make it uniform in another computational domain in order to facilitate the
discretization of derivatives. However, we do not need it here.

Based on such a non-uniform grid, a discretization of the second derivative, such as cjj, is
given as follows. Let {ji � −25 i52} be the local grid around j0 with spacing di=ji+1−ji.
We construct the cubic, Lagrange polynomial c( , which interpolates c over {ji � −15 i52}
if d−15d0, while over {ji � −25 i51} if d−1\d0. Then, the value of cjj is approximated
by c( jj at j0. As shown in Appendix A, such a four-point scheme is of second-order accuracy
and reduces to the standard three-point, centered difference scheme if d−1=d0. For the first
derivative, such as cj, the above switching can be skipped in that the usual quadratic
interpolation is still second-order accurate.

After discretization in this way, the Poisson equations (7) and (13), with Dirichlet boundary
conditions, are iteratively solved by the quasi-minimal residual method [7] using incomplete
LU-factorization as preconditioner. However, the convergence rate is not good enough. We
adopt a multigrid technique to speed it up, as described below.

According to the multigrid practice [8], the original problem is downsized through grid
coarsening. In general, some flow properties present rapid change in the normal direction near
the physical boundary. Hence, semi-coarsening is preferable to double coarsening for preserv-
ing the radial resolution. From the computational point of view, these two strategies can be
mixed. For instance, the grid indices {i � 05 i58}, with i=0 denoting the boundary, can be
downsampled as {0, 1, 2, 4, 6, 8} and {0, 1, 2, 4, 8} for a three-grid scheme. In other words, the
grid is gradually coarsened when it is apart from the boundary. The data transfer, i.e.,
restriction and prolongation, can be quite standard. However, we also seek a possible
improvement as follows. Suppose we have a local, five-point grid, X, and the associated data,
G, which are either partially unknown or partially to be modified. For data restriction we have
X={ji/2� −25 i52} and G={gi/2� −25 i52}, where j91/2 are two slave points satisfying
the relations j−1/2= (j−1+j0)/2, j1/2= (j0+j1)/2, g−1/2= (g−1+g0)/2, and g1/2= (g0+g1)/
2. After this, {g−1, g0, g1} are reevaluated so that the new collection {gi/2� −25 i52} can be
fitted over X by a cubic polynomial. If this is done over the whole grid, only those gi values
indexed with even integers, except suitable modification next the cylinders, are retained to
reflect the grid coarsening. For prolongation we have X={ji � −25 i52} and G={gi �
−25 i52}, where {g−1, g1} denote the coarse-grid data. Again, the unknown fine-grid data,
{g−2, g0, g2}, are determined so that {gi � −25 i52} can be fitted over X by a cubic
polynomial. Details are presented in Appendix A.

In view of these procedures, both restriction and prolongation are performed in an implicit
manner, which involves solving a tridiagonal system of linear equations. Such a scheme
provides an autoregression for the conventional, area-weighted interpolation, and yields a
better performance for the multigrid cycling in terms of iteration count. However, this gain is
partly offset by the extra CPU time associated with the implicitness. Further discussions are
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presented in Section 4. We note in passing that the cycling is of sawtooth-type because the data
are restricted all the way down to the coarsest grid without intermediate relaxation.

An immediate application of this multigrid Dirichlet problem solver is to construct a Stokes
corrector, S, to handle the no-slip, or Neumann, boundary conditions present in Equations (8),
(9), and (14). Let 05ji52p, 15 i5M+1, denote the grid’s j co-ordinates. For 15 i5M,
find two pairs of functions {v1, c1} and {v2, c2}, which are 2p periodic in the j variable, and
respectively satisfy

Dv1=0, Dc1= −Jv1, v1(j, 0)=d(j−ji),

v1(j, h*)=c1(j, 0)=c1(j, h*)=0 (15)

and

Dv2=0, Dc2= −Jv2, v2(j, h*)=d(j−ji),

v2(j, 0)=c2(j, 0)=c2(j, h*)=0 (16)

where D=(2/(j2+(2/(h2 and d( · ) are Dirac’s delta functions. The corrector S is a 2M×2M
matrix whose ith and (M+ i )th column vectors are formed by {c1,h( · , 0), c1,h( · , h*)} and
{c2,h( · , 0), c2,h( · , h*)} respectively. In our experience (see Section 4) each of these columns
only took a few multigrid cycles to solve Equations (15) or (16).

Now, we are prepared to state the algorithm for solving the Navier–Stokes equations
(6)–(9). Instead of c and v, we regard the convection head, Q=Re(chvj−cjvh), as the
unknown. The associated non-linear operator, F, on Q is described by

Algorithm A

1. Given an input of Q, solve the homogeneous Dirichlet problem

Dv=Q, Dc= −Jv,

v(j, 0)=v(j, h*)=c(j, 0)=c(j, h*)=0

2. Compute the vector q containing the values ch(ji, 0) and ch(ji, h*).
3. Use the corrector matrix, S, around Equations (15) and (16) to find the wall–vorticity

vector, v̂, such that S ·v̂+q equals the ch component in Equations (8) and (9).
4. Solve Dv̄=0 with v̂ as the Dirichlet boundary condition, and Dc( = −Jv̄ with c( (j, 0)=

c( (j, h*)=0.
5. Set v=v+v̄, c=c+c( , and compute the value P in Equation (12).

(a) If this is the first run, repeat the foregoing steps with Equations (13) and (14) instead
of Equations (8), (9), and (17); otherwise, skip this sub-step.

(b) By virtue of Equations (13) and (14), update the unknown constant c* in Equation (9)
by c*= −P/P°, and reset v=v+c*v°, c=c+c*c°.

6. F(Q)=Re(chvj−cjvh).
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Note that for Stokes flow, the algorithm reduces to steps 3–5, in that we have Q=0, and
steps 1, 2, and 6 are either trivial or not needed. If Re\0, our goal is to find a Q such that
F(Q)=Q. This is a system of non-linear equations, and is usually tackled by the Newton
method. However, constructing the associated Jacobian matrix and solving the related linear
problem is clearly not an easy task. As an alternative, Algorithm A is augmented with the
following line search method, and is called Algorithm B. Namely

Algorithm B

1. Given an initial guess, Q, find Q*=F(Q) by Algorithm A.
2. Solve the one-dimensional minimization problem

min f(m) for m� [0, 1]

where f(m)= ��F(Q+m(Q*−Q))− (Q+m(Q*−Q))��2 (18)

In Equation (18), �� · �� denotes the Euclidian norm, and, in fact, f(m) is a quartic
polynomial. So the minimization can be done without much ado.

3. Denote the minimizer of Step 2 by m*, and reset Q=Q+m*(Q*−Q).
4. Go back to Step 1 and repeat the whole process until ��Q*−Q ��/��Q �� is smaller than some

prescribed tolerance.

Although it is a descent scheme, Algorithm B performs well only for flow with small
Reynolds number. As a cure again, we use the multigrid methodology, whose ingredients, such
as grid coarsening and data restriction and prolongation, are much the same as those discussed
above for the Poisson equation (also see Appendix A). Since we are dealing with a non-linear
problem, the so-called full approximation scheme (FAS) [8] is adopted for coarse-grid
relaxation. Moreover, the sawtooth cycling for the linear problem is replaced here by the more
standard V- or even W-cycling for increased Reynolds number.

When Algorithm B is finished, c and v come out as byproducts. If the pressure field, p, is
wanted, it can be obtained from the modified Bernoulli head, B=Re(p+ (cj

2 +ch
2)/2J), by

solving the problem

Bjj+Bhh=Re(Jv2−cjvj−chvh) (19)

B(j, 0)= −
& j

0

vh dj and Bh(j, h*)=vj−Re vch (20)

4. WORKED EXAMPLES AND DISCUSSIONS

The flow is examined under the settings summarized in Table I. The reader is referred to
Section 2 for the notations. The computational j, h domain is covered by an 80×24,
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Table I. Flow configurations.

d1 d2 l V1 V2Case

1 2 0.51 −1 0
2 1 2 0.5 0 −1

1 2 0.5 1 −0.53
1 2 0.74 −1 −0.5

non-uniform grid, whose resolution might not be fine enough but satisfies the expository
purpose. All the computations were run on an Intel-based PC.

We begin with computing the Stokes flow, for which the result can be verified by some
analytic findings [1,3]. In this work, Wannier’s formula [1] is employed to check on the
numerical accuracy, and the comparisons are summarized in Table II. Note that, for pressure
field, only Rep is meaningful, as p becomes unbounded as Re tends to zero.

The multigrid performance of our scheme is further examined against the more standard
approach. To distinguish these approaches we use the index system: (i, j, k), where i denotes
the order of discretization (i.e., 1=standard three-point scheme; 2=our four-point scheme);
j denotes the manner of prolongation and restriction (i.e., 1=standard three-point, explicit
scheme; 2=our three-point, implicit scheme); k denotes the manner of grid coarsening (i.e.,
1=standard semi-coarsening; 2=our near double-coarsening). Since the employed grid is
non-uniform in both j- and h-directions, we introduce for each multigrid level an approxi-
mated mesh size: h: (m×n)−1/2, where m and n are the respective grid numbers in each
direction.

The log–log plots of Figure 1 show a definite order of convergence associated with grid
refinement. For cases 112 and 122, this order is 2.1 for the streamfunction and 2.4 for the
vorticity; while for cases 212 and 222 we have 2.6 for streamfunction and 1.8 for vorticity.
Although the standard three-point discretization presents a superconvergence (i.e., one order
higher than its formal estimate associated with a non-uniform grid), our four-point discretiza-
tion still performs better in that the overall relative error is reduced by a factor of 3 at the
expense of 10% increase in CPU time, as shown in Figure 1.

The effect of autoregression in multigrid data transfer is shown in Figure 2, where we plot
the finest grid’s convergence history associated with constructing the Stokes corrector dis-
cussed in Section 3. In view of cases 112 and 122, autoregression does reduce the iteration

Table II. Root-mean-square error, ��numeric−analytic��/��analytic��, for Stokes
flow.

Case 1 Case 2 Case 3 Case 4

c 9.6E−5 3.3E−4 2.8E−4 5.9E−4
1.4E−34.9E−41.2E−36.4E−4v

Re p 1.0E−3 1.3E−3 1.9E−3 1.8E−3
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Figure 1. (a) and (b) Convergence behavior against grid refinement for three-point (�) and four-point
(�) discretizations; (c) and (d) relative CPU times for different schemes discussed in the text.

Figure 2. Convergence histories for computing the Stokes corrector by different schemes discussed in the
text, where 160 samples of boundary conditions are used. (a)–(c) Vorticity (vort); (d)–(f) streamfunction

(strm).

count. However, this gain is partly offset by the associated implicitness, and the CPU time is
reduced slightly in the present study.

Also shown in Figure 2 is a comparison between grid semi-coarsening and near double-
coarsening. In view of cases 111 and 122, it is adequate to only preserve the radial resolution
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near the boundary for catching possible rapid change. By doing so, a significant saving of both
iteration count and CPU time can be achieved (also see Figure 1).

Figures 3 and 4 show that the cylinders’ mode of rotation closely affects the flow pattern,
and the first influence of inertia is the break of flow symmetry with respect to the x-axis. To
find the steady state with increasing non-linearity, one may need some continuation process to
get a good initial guess. That is, the associated Reynolds number is incrementally increased up
to the target value, and each of the intermediate results serves as the initial guess for the next
stage. Such a need can be greatly relaxed by multigrid techniques, as introduced in Section 3.

Figure 3. Streamlines for configurations listed in Table I. (a)–(d) Stokes flow; (e)–(h) flow with Re=40;
for cases 1–4 respectively.

Figure 4. Pressure fields (Rep) for configurations listed in Table I. (a)–(d) Stokes flow; (e)–(h) flow with
Re=40; for cases 1–4 respectively.
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Figure 5. (a) Single-grid computation for flow with Re=40, initiated by flow with Re=0 (�) and
Re=30 (�) respectively; (b) multigrid counterpart initiated by flow with Re=0.

A comparison is presented in Figure 5, where we see Stokes flow serve as a good initiation for
multigrid viscous flow computations. The convergence histories of a three-grid simulation for
flow situations listed in Table I are surveyed in Figure 6, for Re540. Certainly, it also works
for larger Re but we have to increase the grid resolution accordingly.

Next, we provide some quantitative results concerning the influence of Reynolds number on
certain locations, such as the recirculation eddy’s center and closure point. If the latter is
located on one of the cylinders, it split into the separation and reattachment points. These
locations are measured by the polar angle (u) with respect to the inner cylinder’s center and
the positive real axis.

Figure 7 presents the results for cases 1 and 2 in Table I, where either the inner or the outer
cylinder is rotating counterclockwise, but the other one is stationary. Clearly, the initial
influence of inertia on both the separation and reattachment points is quite small. The
computed values of (u/(Re at Re=0 are −5.2×10−3 (case 1) and −1.2×10−2 (case 2) for
separation; −4.5×10−3 (case 1) and 4.9×10−3 (case 2) for reattachment. They reveal that,
initially, both the separation and reattachment points of case 1 move in the direction opposite
to the cylinder’s rotation, while a parallel direction is found for the reattachment point in case
2. Except the last fact, these results are in good agreement with analytic findings of Ballal and
Rivlin [3]. This exception is related to eccentricity, and will be further examined later.

As the Reynolds number increases, we see from Figure 7 the separation point on the
stationary cylinder still moves in the direction opposite to the rotating cylinder. The reattach-
ment point, on the other hand, moves in the parallel direction. Quantitatively, these move-
ments are still small for case 1. In either case we see the separation point moves more
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Figure 6. Multigrid convergence histories, log10(��Q*n −Qn ��/��Q1*−Q1��) against the iteration index n,
for configurations listed in Table I, for Re=10, 20, 30, 40; — � —, one-grid; — � —, two-grid;

— � —, three-grid.

significantly than the reattachment point, but the difference is not so remarkable as found by
San Andres and Szeri [5]. They also predicted a rotation sense opposite to the first-order
perturbation [3] and the present work.

When both cylinders are rotating, i.e., cases 3 and 4 in Table I, the recirculation eddy’s
closure point becomes located in the interior of the flow field. Figure 8 summarizes the
evolution of eddy center and interior closure point (if any) for cases 1–4. As shown in Figure
8(a), the eddy center always moves in the direction parallel to the rotating cylinder for cases
1 and 2. This is a common finding in existing literature. In case 3, where the cylinders are
counter-rotating, the interior closure point is located in the narrow side of the flow field (see
Figure 3). As shown in Figure 8(b), this point is slightly moved with the Reynolds number in
the direction parallel to the inner cylinder’s rotation, while the eddy center is moved in the
direction parallel to the outer cylinder.

Figure 8(c) and (d) show the results of case 4 in which both cylinders are rotating in the
same sense. There are two eddies sharing a pair of closure points as shown in Figure 3. In
response to the inertial effect, both the eddy near the outer cylinder and the upper closure
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Figure 7. Polar angle (in degree) of separation point (solid, negative) and reattachment point (dash),
versus Reynolds number for cases 1 and 2 in Table I. Symbol (�): analytic result for Re=0.

point move in the direction parallel to the cylinders’ rotation. However, the eddy near the
inner cylinder moves with the Reynolds number in the direction opposite to both cylinders,
and in an increase-then-decrease fashion. This is also true for the lower closure point, but it
moves in the parallel direction. Similar phenomena were observed by Ballal and Rivlin [3], but
they used the ratio of the cylinders’ rotating speeds instead of Reynolds number.

Finally, we extend the study of case 2 to cover the variation of eccentricity(e), 05e51.
Figure 9(a)–(c) respectively plots e against the polar angle u of the separation point, the
reattachment point, and the eddy center. In these figures, the Reynolds number serves as a
parameter. It is easy to see that the recirculation region increases with eccentricity, while its
separation and reattachment points are slowly varied with Reynolds number. For small e, the
increase of Reynolds number also makes both the separation point and the eddy center move
in the direction opposite to the outer cylinder’s rotation. Some clues for this observation are
provided by a uniform flow past a rotating cylinder [9,10].

The initial influences of inertia on the locations of these stagnation points, i.e., (u/(Re at
Re=0, are shown in Figure 9(d)–(f) respectively. As far as the rotation sense is concerned, we
see both the separation and reattachment points are opposite to the outer cylinder for small e.
However, they each have a critical value of e beyond which the sense is reversed. That is,
e�0.45 for reattachment and e�0.6 for separation. In response to this change, the eddy
center reaches a local peak in its movement at e�0.5, although its sense is always parallel to
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Figure 8. Polar angle (in degree) of eddy center and interior closure point (if any), versus Reynolds
number for configurations listed in Table I. (a) Cases 1 and 2; (b) case 3; (c) and (d) case 4.

Figure 9. Polar angle (u in degrees) of (a) separation point, (b) reattachment point, and (c) eddy center,
versus eccentricity. V1=0, V2= −1, and Re=0, 5, 10, 20 respectively. Symbol (�): analytic result for

Re=0. (d)–(f) Partial derivatives, 100×(u/(Re at Re=0, drawn out of (a)–(c) respectively.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 479–494
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the outer cylinder. The existence of such a critical eccentricity has been demonstrated, with
certain discrepancies, by first-order perturbation analysis [3] and the B-spline Galerkin method
[5]. Our result is closer to the former.

5. CONCLUSION

A multigrid finite difference scheme is employed to investigate the steady flow between
eccentric rotating cylinders. This scheme is both simple and efficient for viscous flow
simulation. The influence of Reynolds number as well as the eccentricity on certain flow
properties has been examined. Among the demonstrations, the numerical results are shown in
good agreement with analytic findings about the initial effect of inertia.
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APPENDIX A. SOME INTERPOLATION FORMULAS

Let f be a function whose values are given by { fi � −25 i52} over the discrete mesh
{−ah, −bh, 0, h, gh}, where a\b\0, g\1, and h is a generic mesh size. Fitting f over
[−bh, h ] by a quadratic polynomial gives an approximate second derivative at 0

f8 (0)=
2
h2

� f−1

b(1+b)
−

f0

b
+

f1

1+b

�
(21)

Using Taylor expansion, we have the following error estimate:

f8 (0)¬ f ¦(0)−
(b−1)h

3
f (3)(0)+

(1−b+b2)h2

12
f (4)(0) (22)

Hence, the approximation (21) is second-order accurate only if b=1.
Now we fit f over [−ah, h ] by a cubic polynomial. The approximated f ¦(0) becomes

f8 −(0)=
2
h2

� (1−b)f−2

a(1+a)(a−b)
+

(a−1)f−1

b(1+b)(a−b)
−

(a+b−1)f0

ab
+

(a+b)f1

(1+a)(1+b)
�

(23)

The corresponding Taylor expansion is given by

f8 −(0)¬ f ¦(0)+
(a+b−ab)h2

12
f (4)(0) (24)
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If we fit f over [−bh, gh ] by a cubic polynomial, the counterpart is

f8 +(0)=
2
h2

� (1+g)f−1

b(1+b)(b+g)
−

(1+g−b)f0

bg
+

(b−g)f1

(1+b)(1−g)
+

(b−1)f2

g(g−1)(b+g)
�

(25)

and

f8 +(0)¬ f ¦(0)+
(b−g+bg)h2

12
f (4)(0) (26)

In view of Equations (24) and (26), we obtain a class of second-order accurate discretizations
for f ¦(0). Such discretizations reduce to the standard three-point formula when b=1. One can
try any combination of formulas (23) and (25), but the stencil’s sign pattern will become
uncertain. To be sure, we use formula (23) if b]1 and formula (25) otherwise.

The next aim is to smooth f. To this end, simple two-point averages are inserted in between
the mesh points, such as

f( −1/2
 f( (−bh/2)= ( f−1+ f0)/2 and f( 1/2
 f( (h/2)= ( f0+ f1)/2 (27)

Assuming f( over {−bh, −bh/2, 0, h/2, h} is depicted by a cubic polynomial yields the
following condition:

f( −1

(b+1)(2b+1)
+ f( 0+

b2f( 1
(b+1)(b+2)

=
4f( −1/2

(b+1)(b+2)
+

4b2f( 1/2

(b+1)(2b+1)
(28)

For a uniform mesh, Fourier analysis of Equation (28) gives the frequency domain’s amplifica-
tion factor s=2(1+cos u)/(3+cos u) for 05u5p. By comparing it with the standard raised
cosine, s= (1+cos u)/2, a better low-pass filtering is achieved.

In connection with the multigrid, data restriction is done by dropping those odd-indexed f(
values obtained through Equation (28); while data prolongation is performed by replacing the
right-hand sides of Equation (27) with coarse grid points and values.
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